目 录

一、	概述	.1
_,	功能特点	.2
三、	技术指标	.3
四、	安装与接线及外形结构	.5
五、	仪表运行及参数设置	.10
六、	通讯设置及通讯协议	.25
七、	通讯软件使用说明	.30
八、	故障分析与排除	58

一、概述

触控数据记录仪以其丰富的显示画面、灵活的操作方式以及强大的记录、运算、 控制和管理功能,在各行各业中获得了极其广泛的应用。本产品吸纳了各种国内外数 据记录仪的优点,应用最新的显示技术、微电子技术、数据存储和通讯技术,是一款 功能齐全、操作方便、精确可靠、高性价比的产品。

本产品在配置彩色液晶触摸屏显示。可以接收多种类型的电流、电压和电阻信号, 实现温度、湿度、压力、液位、流量、成分以及力、力矩、位移等物理量的显示、记录、越限监控、报表生成、数据通讯、信号变送以及流量累计等功能。

本产品主要由触控液晶屏、按键、ARM 微处理器为核心的主板、主电源、外供变送器电源、数据采集板、信号输出板、大容量 FLASH 等构成:

- ▶ 可配备不同类型的智能数据采集控制板,根据应用要求选择。
- ▶ 內置大容量 FLASH,可通过 U 盘快速将 FLASH 中的数据转储到计算机中。内置的 FLASH 的容量为 70M 或更多至 26 字节,8 通道时若 10 秒记录一次可记录 720 小时,最快 1 秒记录一次所有通道的数据。
- ▶ 数字显示界面、棒图显示画面、实时(历史)曲线画面、报警数据页面。
- ▶ 历史曲线读数光标功能。
- ▶ 测量、显示基本误差: ±0.2% F·S。
- ▶ 可参数设置多点报警功能。

二、功能特点

- ▶ 不需要笔和纸记录, 日常维护工作量非常小, 运行费用低;
- ▶ 采用高亮度触控彩色 TFT 液晶屏, CCFL 背光、画面清晰;
- ▶ 采用 ARM 微处理器,可同时实现多路(仪器主机内部最高支持 64 路以及更多路)信号采集、记录、显示和报警:
- ▶ 采用 70MB 大容量的 FLASH 闪存芯片存贮历史数据, 掉电永不丢失数据:
- ▶ 全隔离万能输入,可同时输入多种信号,无需更换模块,直接在仪器上设置即可;
- ▶ 显示工程量数据的数值范围更宽可显示 6 位数值: -999, 99~1999.99;
- ▶ 可以进行参数设置、显示工程位号,工程单位,有流量累积等功能;
- ▶ 具有红色报警显示,同时指示各路通道的下下限、下限、上限、上上限报 警: 8路继电器报警输出(订制产品);
- ▶ 显示精度高,基本误差为±0.2% F•S:
- ▶ 内置 GB2312 汉字库,使用全拼输入法输入;
- ▶ 支持外接微型打印、内置打印机,手动打印数据、曲线,自动定时打印数据,满足用户现场打印的需求(订制产品);
- ▶ 配备标准 USB2.0 接口。可使用鼠标键盘方便操作,输出历史数据转存快捷方便:
- ▶ 标准串行通讯接口,带光偶隔离的 RS485 和 RS232C 以及以太网;
- ▶ 支持标准 ModBus RTU 通讯协议(选配功能),除支持本公司数据管理软件外,还支持其它组态软件;
- ▶ 采用国际名牌开关电源,能在交流电源 AC 85V~265V 宽电压范围内正常工作;
- ▶ 提供变送器 DC 24V 隔离配电;
- ▶ 通过 EMCIII 级,保证仪表在恶劣的环境中正常工作。

三、 技术指标

3.1. 显示

10.1 寸彩色 TFT 触摸 LCD 或 7 寸彩色 TFT 触摸 LCD

数显画面、棒图画面、实时(历史)曲线画面、报警显示画面共四个基本画面。 (8 通道含有综合界面)

测量精准度(AD累计时间 输入类型 可以测量的范围 16.7ms, 20ms) 显示分辨率 -11.000V 至+11.000V 0 - 10V $\pm 0.05\%$ of rdg ± 2 digit 1mV 0.1 mV0-1V-1.1000V 至+1.1000V $\pm 0.05\%$ of rdg ± 2 digit $\pm 20 mV$ -20.0mV 至+20.0mV $\pm 0.05\%$ of rdg ± 2 digit 0.01 mV $\pm 100 \mathrm{mV}$ -110.0mV 至+110.0mV 0.01 mV $\pm 0.05\%$ of rdg ± 2 digit 测 1-5V +0.800V 至+5.200V $\pm 0.05\%$ of rdg ± 2 digit 0.1 mV量 0-5V 0.000V 至+5.500V $\pm 0.05\%$ of rdg ± 2 digit 0.1 mV范 4-20mA +0.38mA 至+21.00mA $\pm 0.05\%$ of rdg ± 2 digit 0.001 mA围 | 0-20mA +0.00mA 至+21.00mA $\pm 0.05\%$ of rdg ± 2 digit 0.001 mAK -50°C至+1372°C $\pm 0.05\%$ of rdg ± 0.6 °C 0.05℃ J -50℃至+700℃ $\pm 0.05\%$ of rdg ± 0.6 °C 0.05℃ T -50℃至+400℃ $\pm 0.05\%$ of rdg ± 0.5 °C 0.05℃ 0℃至+1600℃ Е $\pm 0.05\%$ of rdg ± 0.6 °C 0.05℃ 0℃至+1300℃ $\pm 0.05\%$ of rdg ± 0.6 °C 0.05℃ Ν 测 +300°C 至+1768°C $\pm 0.05\%$ of rdg ± 0.8 °C R 0.1°C 量 0℃至+300℃ $\pm 0.05\%$ of rdg ± 1.6 °C 范 +300°C 至+1768°C $\pm 0.05\%$ of rdg ± 0.9 °C 0.05℃ S 闱 0℃至+300℃ $\pm 0.05\%$ of rdg ± 1.6 °C $\pm 0.05\%$ of $rdg\pm 1.7$ °C +400°C 至+600°C 0.05℃ В +600℃至+1820℃ $\pm 0.05\%$ of rdg ± 1.0 °C Pt100 -200℃至+400℃ $\pm 0.05\%$ of rdg ± 0.3 °C 0.02℃ 预热时间 30 分以上 环 境 周围使 -20°C至+60°C 适 应 用温度 能力 周围使 20%至 85%RH(没有结露) 用湿度

数字显示范围-999.99[~]1999.99,

实时曲线记录间隔 1 秒 $^{\sim}$ 9999 秒,对应整屏曲线时间 30 秒 $^{\sim}$ 300 分;历史曲线查看间隔从 1 秒到 9999 秒连续可设。

3.2 输入信号

输入信号包括直流电流,直流电压,热电阻,热电偶,远传压力表五类,通过按 键或触屏输入选择。隔离万能输入。

3.3 报警输出

继电器输出: 触点容量 AC 220V, 3A, 阻性负载; 16 点可参数设置输出,可按通道的各报警点值设定。

3.4 外供电源

DC 24V 电源: 用于给变送器供电,最大负载能力≤200mA。

3.5 通讯打印接口(选配功能)

光电隔离;标配 RS232、RS485 通讯。通讯速率 9600, 19200, 57600, 115200 通过设定选择。配套测试软件,提供参数设置软件和应用软件技术支持。可选 Modbus RTU 通讯协议与上位机通讯。

3.6 电源条件

AC 220V 供电的仪表: AC 85~265V, 功耗小于 20VA:

DC 24V 供电的仪表: 24V±10%, 功耗小于 20VA。

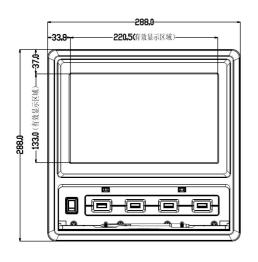
注:实际功耗与仪表采集模组数量有关

3.7 环境及其他

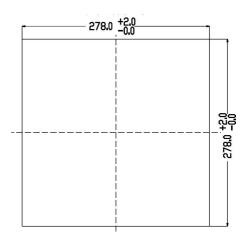
工作温度范围: -20° $^{\sim}60$ °; 储藏温度范围: -20°° $^{\sim}70$ °; 工作湿度范围:低于 85%R. H,无结露; 仪表的重量 (64 通道): 最大约 3.8 kg。

3.8 记录时间

记录时间的长短与 FLASH 存储器可用容量(可用容量=总容量-已用容量(内部程序一般为 10M)、记录间隔和输入点数有关,为方便用户日后进行通道扩展,所以将记录通道点数统一设定为64通道,计算公式如下:

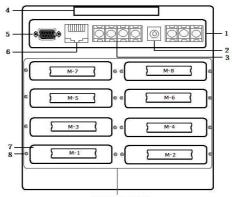

可用内存 70×1024×492×记录间隔 记录天数= 通道数×64×3600

四、安装与接线及外形结构


4.1 外形及安装开孔尺寸

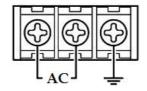
- 为确保安全,接线必须在断电后进行。
- 交流供电的仪表,其\(\delta\) (PG) 端是电源滤波器的公共端,有高压,只能接大地,禁止与仪表其它端子接在一起。

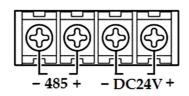
本说明书给出的为基本接线图,受端子数量的限制,当仪表功能与基本接线图冲 突时,接线图以随机说明为准。



外形尺寸: 288×288×200mm(长×宽×深)

安装开孔尺寸 278×278mm


4.2 接线端子图

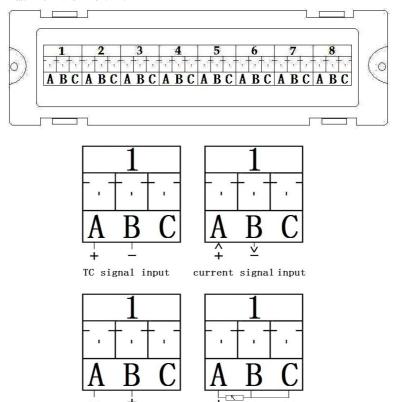

测量装置安装槽

模块安装顺序是由左下角 M1 (1~8 通道) 开始往右 M2 (9~16 通道) 再往上面一层左 M3 往右 M4 逐层往上的顺序最上面左 M7 右为 M8 (57~64 通道),继电器信号输出模块一般默认插入 M8 位置。

1-----交流 AC85-265V 电源输入端子

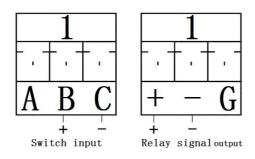
- 2----直流 DC24V 输入端子
- 3-----直流 DC24V 输出以及 485 信号输入端子

此 RS485 通讯口数据采集模块外挂扩展输入接口,不能作为与 PC 或其它设备通讯用(与其它设备通讯时用 9 针口的 RS485), DC 24V 为外接传感器供电电源输出接口。4-----提手

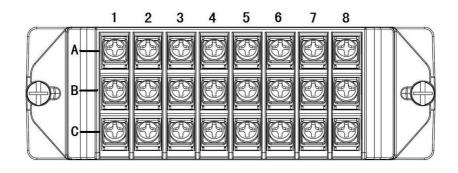

5-----RS232、RS485 通讯接口 第 2 针为仪表的"RXD"(RS232),第 3 针为仪表的"TXD"(RS232),5 针为仪表的通讯"地";4 针为 RS485+,9 针为 RS485-;1 为 RS485+,6 为 RS485-。

6-----以态网接口

7----测量模组装置安装插槽


8-----固定测量装置螺丝

4.3.1 输入信号接线方式


RTD signal

voltage signal

除了以上信号输入输出外,还有温湿度采集模组(TP1728),温湿度 采集模组接线信号为数字信号,TP2305 温湿度传感器有三根线,仪器出厂 后,本厂家会将线接好,不用客户自己另行接线。

4.3.2 输入信号接线(当接线模块与采集模块组装后,请勿拆开,拆开会导致接线模块损坏),以上接线模块特定。

1-8 代表八个通道, A、B、C 代表一个通道的三个接线端子;

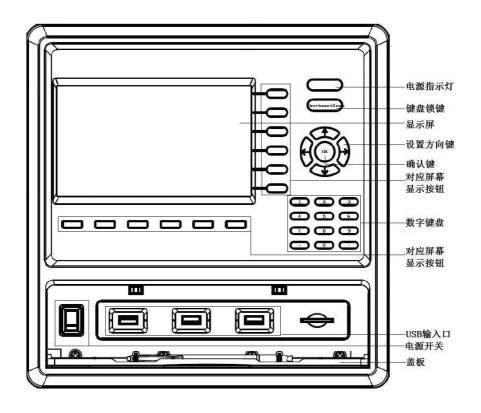
热电偶信号输入: B 脚接信号输入正, C 脚接信号输入负;

电流信号输入 : A 脚接信号输入正, C 脚接信号输入负;

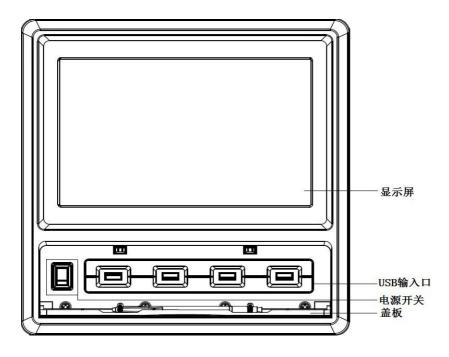
电压信号输入 : B 脚接信号输入负, C 脚接信号输入正;

电阻信号输入 : 三线制 PT100 铂电阻接 A、B、C 脚, A 与 B 短接;

开关量信号输入: B 脚接信号输入正, C 脚接信号输入负;


4.3.3 继电器输出信号接线及安装说明

继电器输出模块 TP1718 本机默认插入仪器背后面右上角 M-8 号槽口,在设置某个通道的上限或下限报警的时候,在参数设置窗口内设置上下限值对应该位置的触点号(触点号1对应继电器模块通道1号口、触点8对应8号口,继电器开关信号输出口+-,继电器为常开型);例:第1通道上限为50,可以设置对应位置触点为1~8中的任意一个继电器触点,第2个通道上限或下限值也同样可以设置1~8中的任意一个触点,设完所设定的触点,当此通道的值超过所设定的上或下限时,上或下限对应触点的继电器就会正常动作;同时也可以设置回差值,回差值指的是当继电器工作后,此通道的值回到限值内的差值继电器即停止工作(如上限值为50,某通道值已超过50,回差值设定为2,此时此通道对应的继电器的触点就会导通,当此通道显示值小于48时此时此通道对应的触点继电器才会断开停止工作)。


五、仪表运行及参数设置

本触摸型数据记录仪具有多个操作显示画面和参数设置界面,显示清晰、信息量 大、参数设置方便。用户无需专业培训就可以方便地操作使用仪表。

7 寸显示屏款外形如下:

10 寸显示屏款外形如下

仪器接上电源后显示系统开机界面。开机系统完毕,进入实时数值显示界面。下面分别就仪表的键盘操作、各操作显示画面、各参数设置画面分别加以介绍。

点击设置按钮,可选择进入各参数设置画面。(**新机出厂后没有设置密码,密码行直接空着点确定进入**)直接确认键后即可进入参数设置。

系统参数设置

系统参数设置主要用于设置系统日期、系统时间、存储间隔时间,本机 IP 地址等参数,短信报警电话号码设置(在下面 5.10 有介绍);右边有铵键有关于仪器的使用说明和介绍以及仪器程序版本介绍。

仪器参数设置

通道参数设置画面用于设置各个通道的信号类型、工位号、工程单位、量程上下限、滤波常数、流量参数设置(小信号切除、开平方)、累计、报警上上限、报警上限、

报警下限、报警下下限等。通道号及测量单位的修改点击设置,进入参数设置,可以 对其进行修改。

信号类型

本仪表支持多种信号类型,其中模拟量信号支持万能输入,改变不同的信号类型,只要改变端子的接线并在此处设置相应的信号类型即可。设定信号类型时请注意要和一次仪表或检测元件的信号一致。

开平方及小信号切除

开平方与小信号切除一起配合使用,小信号切除的范围可设为 0~25.0%。其作用是当测量值较小时,测量误差较大,特别是在 1%以下,精度将大大下降,工程上一般作归零处理。

变送输出

关于变送输出的参数有三个:输出通道,变送输出上限,变送输出下限,输出信号 类型在出厂时已设定,这些参数都放在通道参数设置设置画面中,输出通道号范围是 1~8,使用方式另附说明。

关于通道的运算功能(虚拟运算通道)

记录仪的通道分为物理通道和虚拟运算通道,物理通道出厂后不可设置或更改,但可以增加运算通道,如取得物理通道间的测量值进行简单的运算来实现,运算的方式有加、减、乘、除。运算参与的通道仅能是物理通道。

5. 1 运行画面

数据记录仪运行过程中所显示的画面为运行画面,包括数值显示界面、棒图画面、曲线界面;报警界面;及设置按钮、参数设置、系统设置等画面。其中显示界面、棒图画面、实时(历史)曲线画面为常用的基本画面。8通道的画面中增添了综合界面。屏幕右上角的时间显示为当前的日期及时间。

5.2 开机画面

屏幕会显示点击屏幕进入启动属性窗口,这时我们不需要去点击屏幕,让屏幕直接进入显示开机启动画面。

5.3 显示界面

显示界面可以对当前的状况有比较全面的了解,包括通道名称,测量值,工程量

单位,报警指示,报警输出状态等。

5.4(数显)数字显示界面

数显画面分为64、48、40、32、24、16、8 通道数显画面(8 通道有一个综合显示画面),用户可通过按设置按钮进入参数设置选择通道数目即可实现所需要通道显示数目的显示界面。如下图为16 通道显示界面。

下图为显示画面单个通道的具体内容,其中包含通道名称、单位、测量值和报警标志四个部分。报警标志从上到下依次为上上限报警、上限报警、下限报警、下下限报警。数值正常时,报警标志为绿色,当超过报警值时,对应的报警标志会由绿色变为红色(或者是:出现报警时,对应的报警标志会由绿色变为红色)报警值可以在参数设置里设置。

点击方框内的区域内会弹出显示该通道基本信息的小窗口,小窗口如上图所示。

显示画面下按钮功能介绍:

在界面底端有六个按钮(保存、显示、棒图、曲线界面、报警界面、设置)。

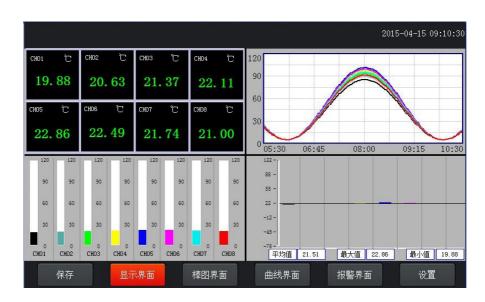
保存: 在参数设置的时候当前设置的参数为初始设置的参数并写入磁盘,防止在参数设置的时候突然断电而丢失设置的参数。(现在的产品已做仪器系统更新,采用自动保存参数的方式,无需使用保存按钮)

曲线界面: 切换按钮,按下此按钮可以切换到曲线界面,其中分实时和历史显示画面。

报警界面,切换按钮,按下此按钮可以切换到报警界面,在报警界面下方有一个报警按钮,按此按钮可进入查看历史报警数据,可以选择时间段来进行查看历史报警数据。(下图)

设置:显示界面下的设置按钮,通过此按钮可以进入参数设置和系统设置。点击设置选择参数设置。

(新仪器出厂默认没有密码,直接点击确定进入设置!)


在参数设置界面里面可以对各项参数进行设置,显示通道的数目,通道名称,通 道号的类型、量程、单位等各项参数进行设定。对于真空、累积、真空、开方、滤波、 切除等按钮是针对订制类产品进行设置的,如气体流量,水流量等进行设置的,在流量测试产品中另附说明介绍。

系统设置界面

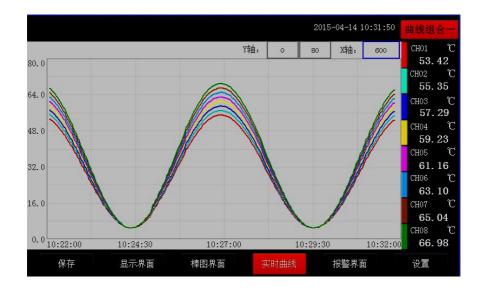
在此界面下可点击"设置"按钮进入密码,及报警开关,存储间隔时间,仪器系统时间,屏保开关和屏保时间,网口通讯 IP 地址等信息,后面的电话号码是针对订制 类机型 GPRS 短信报警用的设置的手机号码,右边有关于系统版本的号的记录,便于售后检修系统本的确认;还有关于仪器的一个简短的使用帮助说明。

5.5 综合界面

综合界面只针对"8通道显示界面",界面如下图所示。综合界面中将数显界面、实时曲线界面、棒图界面和平均值棒图显示界面综合在一起。给客户一个浏览全局的新体验。

5.6 (棒图)棒图显示画面

棒图界面:切换按钮,按下此按钮可以切换到棒图界面。棒图画面分为四个画面,分别为"1-16棒图"、"17-32棒图"、"33-48棒图"、"49-64棒图"四个界面,采用循环翻页模式进行切换页面,下图为1-16通道棒图画面

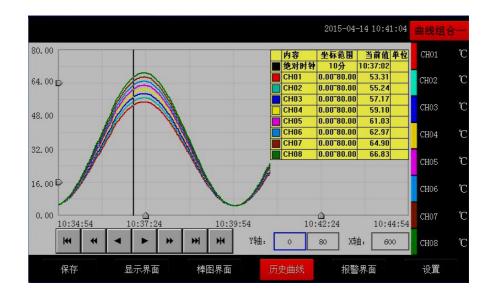


上图显示出棒图界面通道的具体内容,其中包含通道名称,数值和百分比棒图显示。棒图通道也具有报警功能,当通道值大于上限报警值或者小于下限报警值时,百分比填充颜色会变成红色,显示单位为百分比。

棒图界面按钮功能和显示画面界面类同。

5.7 (曲线) 实时曲线画面

当前曲线记录只保留单屏的显示数据,可根据观察的需要,通过改变 Y 轴和时标 X 轴来改变显示刷新的速度,各条曲线一致,并不影响 FLASH 记录的时间间隔。(下图)


在实时曲线下显示当前通道的测量值,通道号,工位号,工程量单位,曲线的打点间隔、报警状态。

量程的设定:实时曲线画面上方有可以设置 X、Y 轴量程的标签,曲线图会根据你设置的量程做相应的改变。

实时曲线画面按钮功能:底部的按钮类同于显示画面和棒图界面,右上角的按钮为切换按钮,通过它可以查看更多通道的实时曲线和历时曲线。

5.8 历史曲线画面

FLASH 记录用于长期数据保存,一般设置的记录间隔较长;记录间隔从 1 秒到 9999 秒钟来进行选择,各通道的记录间隔一致。根据生产过程的需要,合理设置 FLASH 记录的间隔,兼顾记录间隔与时间的矛盾,可以准确地反映过程参数的变化情况。(设置记录间隔时间在显示界面下的设置按钮进入系统参数测试选择设置记录间隔时间,在下面有介绍)(下图)

追忆模式下的时标不能改变,由 FLASH 存储的记录间隔决定。

追忆模式下时间显示为曲线右侧起点的时间。

追忆模式下的报警状态指示仍为实时报警状态而不是记录状态。

读数光标模式用于精确显示追忆曲线各点的数值。光标上方数值为当前通道在光标处 的实际数值,同时屏幕右上方时间变为光标所在位置的时间。在光标模式下,不能向 前或向后追忆。

如下图所示的按钮,从左到右依次的功能是:向 X 轴左端滚动曲线一页、向 X 轴左端滚动曲线半页、向 X 轴左端滚动一个主划线位置、向 X 轴右端滚动一个主划线位置、向 X 轴右端滚动曲线半页、向 X 轴右端滚动曲线一页、设置。

其余的界面按钮的功能类同于实时曲线显示画面。

注:

- 1. 如果记录仪曾经掉电, 在掉电期间因无数据记录, 在追忆时曲线会出现间断, 历史数据不会丢失。
- 2. 若记录仪在运行过程中更改了记录间隔时间,在查询历史曲线时可能会出现间断或历史数据时间 不准。

5.9 参数设置界面

通道参数设置画面用于设置各个通道的信号类型、工位号、工程单位、量程上下限、滤波常数、流量参数设置(小信号切除、开平方)、累积、报警上上限、报警上限、报警下限、报警下限,继电器输出触点号的选择设定等。

通道数目:是指显示界面显示的通道个数,比如 8、16、24、32、40、48、64 分别表示在一个界面中显示 8、16、24、32、40、48、64 个通道,根据不同的需求设置不同的通道数目。

通道: 就是通道选择,选定了某个通道,再设置后面的名称、类型、单位、量程、 下下限、下限、上限、上上限、调整都是对该通道属性的设置。

触点: 用于设定下限或上限值的报警输出点,用来触发继电器模块动作的通道号, 在 **4.3.3** 的说明书中有过介绍。

名称: 通道的名称。

类型:通道的类型。

单位:通道的单位。

量程: 通道的量程,设置量程对棒图显示很重要。

上上限、上限、下限、下下限:通道的四个报警值。

调整: 对通道值的修正调整,使其显示理想的数值。通过调整 k 值来调整温度的倍数 (乘除),调整 b 值可以调整数值的正负值的大小。

按钮功能

清除累积:清除所有的存盘数据。

复制:可以对某个通道的参数设置进行复制。

粘帖: 将以复制的另一通道参数粘贴到当前通道。

数据导出: 切换按钮,通过按此按钮进入到"数据导出"界面(将导入的数据的 U 盘插入仪器 USB 端口)。

在数据导出按钮里面含有"快速导出数据"与"导出数据"两个按钮。 快速导出历史数据和导出历史数据的区别:

一、快速导出数据

优点: 速度快,当仪器内数据达到上万条时,大概用 30s 的时间就可以将数据全部导出,在快速导出数据时是不支持时间段选择,即导出仪器内全部历史数据。

缺点: 1、在导出数据的时间段内仪器将停止数据采集和存储,即除快速导出历史数据进程外,其他的进程都处于休眠状态,当数据导出完成后,他们才会被唤醒执行; 2、导出的数据存放在 U 盘数据文件夹中,生成的数据文档需要使用本公司上位机专用软件可打开查阅。

二、数据导出

优点: 1、在导出数据阶段,仪器仍然可以执行数据采集存储等功能,即其他的进程仍在执行不需要做休眠处理,同时可以设置选择时间段进行数据导出。2、导出的数据保存在 U 盘根目录下并以时间的方式命名,可以通过 Excel 表格打开查阅(若想用上位机软件查阅,则不能改动此文件,否则上位机软件将不能识别该文件)

缺点:导出数据速度较慢,即导出使用的时间比较长,若数据高达上万条,导出数据可能需要十多分钟或者更久。(以上是两者的区别,用户需根据自身需求进行操作。) language:语言的选择切换按钮,可以中英文切换显示。

5.10 系统参数设置界面

系统参数设置包括:日期、记录间隔、密码设定、网口通讯 IP 设定、蜂鸣器报警、温升、屏保、设备地址。

日期:对当前系统的日期和时间进行设置。

记录间隔:数据存盘的间隔,设置记录间隔对导出的数据密度有直接影响。

密码设定:点击进入"用户管理器",可以进行修改用户密码、新增用户、删除用户等操作。

蜂鸣器报警:点击切换开关蜂鸣器报警功能。

屏保设置:设置屏保的开和关,开的状态可以设置屏保的时间,过了设置的时间 仪器显示屏就会不亮了,进入节电状态。

温升:这是用于电力电气开关接触器件测温升时用的,在测温升的时候,可以选择 0N,正常测温度我们是 0FF 状态,当选择 0N 状态仪器就会从第二个通道到最后一个通道减去第一个通道的温度值,其它通道的温度值就比第一通道温度值上升的一个温度值,此时第一个通道的温度探头要置于空气中。

以太网口通讯功能设置:

记录仪网口通讯 IP 设置: 查看路由器说明书,不同型号路由器的 IP 地址不一样,有些是 192. 168. 1. 1,有些是 192. 168. 0. 1;以: 192. 168. 1. 1为例: IP 地址设置为:

192. 168. 1. *, *号可以从 2 到 254 之间,不能设置局域网内已用的 IP 地址。在软件内的 IP 地址设置与仪器中的 IP 地址要一致,目标机端口设为 3000。

短信报警设置:

此功能为订制短信报警功能的仪器所设,配合 GPRS 短信发送模块来发送短信,只要输入需要接收的短信电话号码就可以。

5.11 报警界面

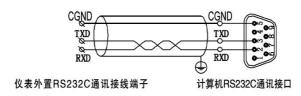
报警界面包括浏览表格和滚动条两个部分显示报警信息。浏览表格可以查询任意时刻的报警数据,滚动条只显示当前报警信息。通过浏览表格右下角的"设置"按钮可以进入"设置时间范围"的小窗口,对其进行时间设置来查询报警信息。

六、通讯设置及通讯协议

通讯是通过通信接口,计算机可以读取各通道的测量值、报警状态。 读取仪表的全部参数,及设置参数。

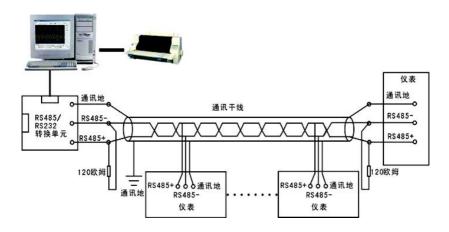
本系列数据记录仪为用户提供了两种与上位计算机通讯的标准接口 RS-232、RS-485 , RS-232 适用于点对点短距离通信,其主要用于仪表与便携计算机的通信; RS-485 通信适用于长距离一点对多点的通讯,其主要在多台仪表联网并与计算机通信时使用。具体选用哪一种通讯方式由用户视需要和具体情况而定。本仪表采用 ASC II 和 MODBUS 通讯协议。并提供与参数设置软件等各种工控软件的连接。

6.1. 通讯概述


- ▶ RS-232 方式只允许一台上位计算机挂一台记录仪。此种通讯方式适用于使用便携机的用户随机读取记录仪数据;也可连接无线数传电台进行远程无线传输或者连接串行微型打印机打印记录仪内的数据和曲线。
- ▶ RS-485 方式允许一台上位机同时挂多台记录仪。此种通讯方式适用于使用终端机的用户与本系列仪表构成网络,实时接收记录仪数据和与各类控制系统相连。

6.2. RS-232 通讯方式

- ▶ RS-232C 通讯接口,用户只需将所配备的 RS-232 三芯通讯线的一端接于仪表 RS-232C 接口,另一端与便携机(或 PDA)的串行口相连,便可实现 RS-232 通讯 连接。
- ▶ 在记录仪系统参数设置中,选择好通讯地址和波特率,并在计算机管理软件中作相应的设置,即可进行 RS-232 方式的通讯。
- ▶ 与计算机的接线如下图所示:


图 RS-232 通讯接线方法(仪器内部2、3 脚交叉连接)

通讯接口接线定义

6.3 RS-485 通讯方式

▶ 本系列数据记录仪的 RS-485 通讯线采用屏蔽双绞线,其一端通过 RS-232/485 转换模块接到计算机的串行通信口,另一端接到记录仪通讯端子。

其连接方式如图所示:

- ▶ 在记录仪系统参数设置中,选择好通讯地址和波特率(固定为9600)。
- 双芯屏蔽线的屏蔽层作为通讯地线,注意不可与设备保护地连接。当传输距离较远时,传输干线的两端需分别加一个120Ω的终端电阻,连接在RS-485通信线"+"和"-"之间。
- ▶ 当一台计算机挂多台记录仪时,网络拓扑结构为总线型,每台记录仪通过支线并接在干线上。需注意的是终端电阻要接在通讯干线的两端,分支后的传输线要尽可能的短,以减少干扰。
- ▶ 通讯距离长时可选择中继模块。

6.4 通信测试

在连接好计算机与记录仪的连线后,检查主机与记录仪的波特率及设备地址是否相符,"串口调试助手"对记录仪发命令,看记录仪是否有回应。

6.5 通讯接口

RS-232/RS-485、以太网接口。

6.6 Modbus RTU

电脑和温度记录仪之间的通信是采用 Modbus 协议通信。。

ModbusRTU 通信命令:

	功能码	功能	发送帧	接收帧
1	0x03	读取一个或多个寄存器数据	设备地址: 0xXX 功能码: 0x03 起始地址 High: 0xXX 起始地址 Low: 0xXX 寄存器数 High: 0xXX 寄存器数 Low: 0xXX CRC 校验 Low: 0xXX CRC 校验 High: 0xXX 例如发送: 01 03 00 00 00 08 44 0C	设备地址: 0xXX 功能码: 0x03 数据长度 n: 0xXX 数据 0: 0xXXXX
2	0x06	写单个寄存器 数据		
3	0x10	写多个寄存器 数据		
4	0x11	读取设备信息		

6.7 CRC的生成

循环冗余校验(CRC) 域为两个字节,包含一个二进制16 位值。附加在报文后面的CRC 的值由发送设备计算。接收设备在接收报文时重新计算CRC 的值,并将计算结果于实际接收到的CRC值相比较。如果两个值不相等,则为错误。

生成CRC 的过程为:

- (1). 将一个16 位寄存器装入十六进制FFFF (全1). 将之称作CRC 寄存器。
- (2). 将报文的第一个8位字节与16位CRC寄存器的低字节异或,结果置于CRC 寄存器。

- (3). 将CRC 寄存器右移1位(向LSB 方向), MSB 充零. 提取并检测LSB。
- (4). (如果LSB 为0): 重复步骤3 (另一次移位). (如果LSB 为1): 对CRC 寄存器异或多项式值0xA001 (1010 0000 0000 0001)。
- (5). 重复步骤3 和 4,直到完成8 次移位。当做完此操作后,将完成对8位字节的完整操作。
- (6). 对报文中的下一个字节重复步骤2 到5,继续此操作直至所有报文被处理完毕。
- (7). CRC 寄存器中的最终内容为CRC 值。
- (8). 当放置CRC 值于报文时,高低字节必须交换。

6.8 Modbus TCP

ModbusTCP 通信命令:

	功能码	功能	发送帧	接收帧	
1	0x03	读取一个	事务元标示符 High: 0xXX	事务元标示符 High: 0xXX	
		或多个寄	事务元标示符 Low:0xXX	事务元标示符 Low: 0xXX	
		存器数据	协议 High:0x00	协议 High:0x00	
			协议 Low:0x00	协议 Low:0x00	
			长度 High: 0x00	长度 High: 0xXX	
			长度 Low:0x06	长度 Low: 0xXX	
			(长度是以下橙色部分的	(长度是以下橙色部分的字	
			字节数量)	节数量)	
			设备地址: OxXX	设备地址: 0xXX	
			功能码: 0x03	功能码: 0x03	
			起始地址 High: OxXX	数据长度 n: 0xXX	
			起始地址 Low: 0xXX	数据 1: 0xXXXX	
			寄存器数 High: 0xXX		
			寄存器数 Low: 0xXX	数据 n: 0xXXXX	
			CRC 校验 Low: 0xXX		
			RC 校验 High: 0xXX 00 01 00 00 00 13 01 03		
			例如发送:	00 00 00 00 00 00 00 00 00	
			00 01 00 00 00 06 01 03	00 00 00 00 00 00 00 6D AB	
			00 00 00 08 42 E9		
2	0x06	写单个寄			
		存器数据			
3	0x10	写多个寄			
		存器数据			
4	0x11	读取设备			
		信息			

6.9 寄存器地址列表

参	寄存器地址		寄存器名称	内容	操作
数类别	十六 进制	十进制			
测量值	00-7FН	0-127	TempValue [0] TempValue [127]	温度测量值,共64通道。	只读
设置	АОН	160	ChannelNum	通道数	只读
置参	A1H	161	AIUpLmt	报警上限值	读写
数	A2H	162	AIDownLmt	报警下限值	读写
小数位数	АВН	171	Dot[0] Dot [127]	对应各个通道的小数点 位数,共64通道。	只读

例如读 16 个通道的温度值时:

发送: 01 03 00 00 00 20 44 12

七、通讯软件使用说明

7.1 系统登录

1、在 DataLogger 文件夹中找到 **fie DataLogger** 应用程序并双击,运行系统。

rie DataLogger 2015/4/21 11:08 应用程序 1,117 KB

图 7-1 DataLogger 应用程序图标

2、双击运行后会弹出系统主界面,如下图 7-2 所示。

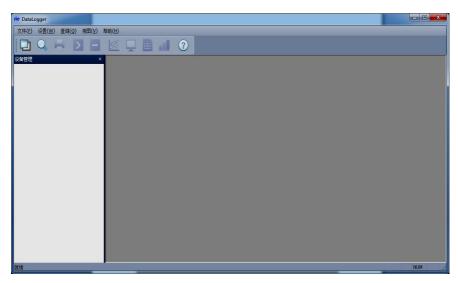


图 7-2 DataLogger 主窗口

7.2 系统界面介绍

- 1、系统名称显示区:在系统的左上角显示 **fie DataLogger** 标志。
- 2、主菜单栏:包含"文件(F)"、"设置"、"查询"、"视图(V)"和"帮助(H)" 5个选项
- 2.1 "文件 (F)" 选项包含"添加设备"、"文件转化"、和"退出(X)"等 3 项操作:

- 2.2"设置"选项,为"报警设置";
- 2.3"查询"选项,对历史数据进行查询操作:
- 2.4 "视图(V)"选项,可对系统的"设备管理"、"工具栏"和"状态栏"的显示与否进行设置:
 - 2.5 "帮助(H)"选项,向用户提供系统的版本信息。
- 3、工具栏:包含设备管理、查询历史、打印预览、开始采集、停止(数据采集)、曲线(数据曲线)、数显、列表、棒图和版本信息10个选项。
- 4、显示主窗口:采集数据以不同的方式显示,历史数据、报警记录查询等显示 区域。

7.3 建立设备和通讯设置

7.3.1 建立设备

在"设备管理"区域内点击鼠标右键,选中"添加设备"弹出如下图 2-3 新建设备对话框,设备名称可自命名,设备地址为下位机地址(可在下位机系统设置界面中查询),根据需要选择相应的通道数目和起始通道(默认起始通道为 1)。当通道数目大于 64 或者需要将通道分成不同的类,可以各类通道挂在不同的设备上。如前 8 个通道测量温度,后 8 个通道测量湿度并且想把他们以不同的窗口显示出来,可以按一下操作进行: 1)建立一个新的 8 个通道的设备,设备类型(选择通讯协议,其中**w表示无线协议)一〉设备名称一〉设备地址为 1(仪器默认地址为 1)一〉通道数量 8 通道一〉起始通道 1; 2)再建立一个 24 通道的设备,设备名称一〉设备地址为 1 一〉通道数量 8 通道

图 7-3 新建设备对话框

本系统还提供 1 对多的通讯方式,即本系统可以同时监测多台仪器。假如,您有多台仪器需要同时监测,可以进行如下操作实现: 1) 在仪器中的系统设置界面中将设备地址分别设成 1, 2, 3······等不同的值; 2) 在系统中分别建立相应通道的设备,其中设备地址设定为与仪器设定的设备地址一致。如有两台仪器,第一台为 16 通道设备地址设为 1, 第 2 台为 32 通道设备地址为 2; 在系统中先建立一个设备:设备名称一〉设备地址为 1 一〉通道数量 16 通道一〉起始通道 1; 再建立另外一个设备:设备名称一〉设备地址为 2 一〉通道数量 32 通道一〉起始通道 1。

将鼠标放在设备名上面,这里放在设备管理栏十···1(设备名称)的上面点击右键选择设备属性,弹出设备属性对话框如下图 2-4 所示。在这里面可以将设置与下位机通讯的方式网口通讯或者串口通讯,这个可根据您的需要进行设置。

1) 网口通讯

用网线将下位机和电脑相连,在下位机系统设置界面中查看或者修改 ip 地址,然后修改电脑本地连接地址,确保电脑和下位机 ip 处于同一网段内。端口号默认为 3000.

2) 串口通讯

除了上述网口通讯外, 仪器还支持串口通讯, 通过电脑的 RS232 和仪器的 RS232 口相连, 端口可点击下拉框进行选择, 波特率默认为 9600.

手机号码是指下位机系统界面中的 tel 号码,目的为用户提供短信报警功能(该功能需要另外添加短信报警模块)。点击确定保存设置参数并关闭该对话框。

图 7-4 设备属性设置

7.3.2 选择数据显示方式

本系统提供多种数据显示方式:曲线、数显、列表和棒图。双击设备 1,则工具栏中的显示方式可以选择(默认为曲线界面如下图 7-5 所示),设置完参数后,在主菜单栏中的"实时采集"选项或者直接在工具栏中选择一种数据显示方式,这里只选择数显方式进行说明。在主菜单栏中选择"操作"中的"开始实时采集"或者点击工具栏中的"开始采集"按钮开始与下位机建立通讯,如下图 7-5 所示。

在曲线界面中曲线绘制区域中点击鼠标右键选择参数设置如下图 7-6 所示,对曲线属性进行设置。在此窗口可以设置 4 个不同的 Y 轴,并可以选择不同的通道并绘制

相应的曲线。但是一个通道只能选择一个 Y 轴。各通道的曲线属性可点击设备管理区域内点击相应的通道进行设置。

按住 Shift 键并在曲线上选择相应的区域可以求出该段时间内的各通道的最大值、最小值和平均值。按住 Ctr 键并选择相应的区域,可以将本段曲线沿 X 轴放大。

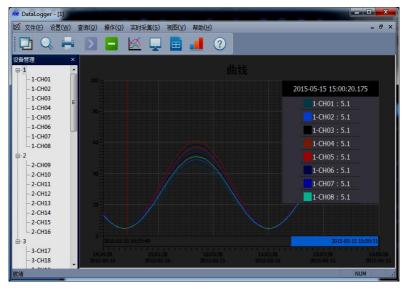


图 7-6 曲线界面

图 7-7 曲线参数设置

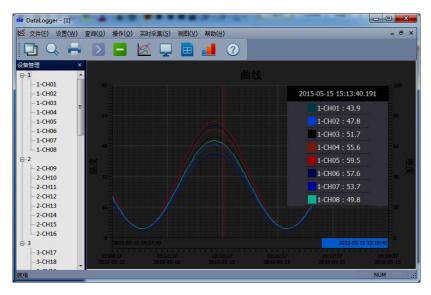


图 7-8 绘制多个 Y 轴



图 7-9 快捷键求平均值

图 7-10 数显界面

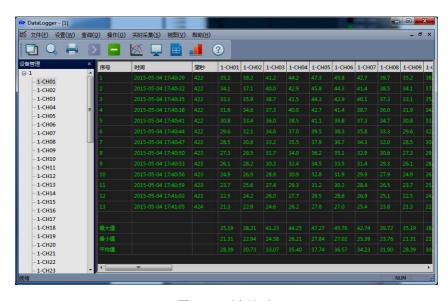


图 7-11 列表界面

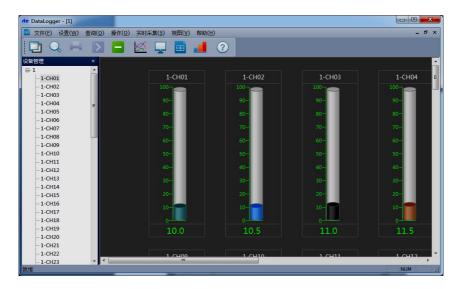


图 7-12 棒图界面

各个通道的参数可在设备管理区域内,选择相应的通道点击鼠标右键设备属性进行设置。如下图 7-13 通道属性设置,在此窗口内可设置设备名称:通道名称,禁止报警:是/否,显示颜色,通道单位,显示小数位数等,并能够向下位机读就是仪器设备取或者写入通道的下限和上限等操作。

图 7-13 通道属性设置

7.3.3 报警设置

本系统为用户提供智能短信报警服务,此服务需要连接外部短信报警设备(电脑端需要外接无线短信报警器,如 T3-DTU 设备,下图 7-14 所示,下面所述的报警设备都指的是 T3-DTU 设备),作用是通过改设备以短信方式发送短信信息通知管理员,管理要根据这个短信内容不确定要不要到现场。具体设置方法:选择主菜单栏中"设置"选项,选择"报警设置"进入"报警设置"界面,如下图 7-15 所示。

图 7-14 DTU-无线短信报警器

端口号: com3 是短信报警器所占用的串口(根据用户主机所识别的短信信报警器的连接端口,用户自行选择)。

波特率: 默认是 9600 (视报警设备通讯比特率而定),再设置端口号与波特率时需停止数据采集。

短信报警:可同时关联8个手机号码(注意:目前只能使用移动的电话卡),当温度或湿度超过上限或低于下限时,短信报警器就会自动往关联好的手机号码发送短信。

声音报警:播放报警声音,当达到报警触发条件时,系统会发出报警声音。

短信报警延时: 当报警条件被触发时,选择延时多长时间给管理员发送报警短信。 短信发送时间间隔: 设置报警短信发送的周期。

报警设置界面的右侧可以读取或写入设备各个通道的上、下限,上下限主要是为报警服务的,即通道采集数据大于该通道的上限或小于该通道的下限时,系统就会通

过外部报警设备向管理员发送报警信息。

图 7-15 报警设置

点击保存回到系统主界面,如图 7-16 所示。此时在数显窗口中可以看到第三通道数据超出系统设置的上限(数据和上限值都以红色显示),系统会每隔 20s 向管理员的手机发送一次信息。

图 7-16 数据超过上限报警

7.4 历史数据

7.4.1 历史数据及报警记录查询导出

点击主菜单栏中的"查询"选项中的"历史数据",弹出图 7-17 界面,在该界面中选中你需要查询的数据,然后在选择相应的操作:打开历史曲线、打开历史列表。

图 7-17 历史记录

点击主菜单栏中的"查询"选项中的"报警记录", 弹出图 7-18 界面, 在该界面中 选中你需要查询的数据。

起始时间	2015/ 3/ 9 🕶 1	1:30:50 💠 设备:	有线	□曲线	查询历史数据	打开历史数据	通道参数设置
结束时间	2016/3/9 - 1	1:30:50 🚔 通道:	所有通道	☑列表	查询报警记录	导出	打印
序号	设备	通道	时间	触发值	上限设定值	下限设定	值 报警信息
							数值低于
	有线	有线-CH01					数值低于
	有线	有线-CH01	2015-09-06 14:42:07				数值低于

图 7-18 报警记录

点击导出按钮弹出对话框,选择相应的路径和文件名即可,然后点击导出,软件中保存的数据就保存到文件中。

7.4.2 打开下位机导出的历史数据

本软件支持阅读下位机导出的数据的功能,在下位机中点击快速导出数据,会在 U 盘的根目录下生成一个"数据"文件夹,点击软件中菜单栏中的文件选择"文件转换"弹出下面 7-19 对话框,选择合适的起始时间和结束时间,选择 U 盘中的 MCGS_DATA 文件,导出路径依自己的情况而定,然后点击导出即可。

图 7-19 文件转换对话框

然后进入查询中历史数据查询界面,点击"打开历史数据"选中转换的文件,点击打开"打开历史数据"后点击浏览,找到记录仪下载转存过来的文件夹,文件名的扩展名选择*.csv,即可找到记录仪下载转存过来的文件(如图7-20),点击打开,在打开过程中可选择列表式查看和曲线查看两种方式查看,而在下位机中直接点击导出数据,则无需文件,直接进入历史数据查询即可。

图 7-20 打开记录仪下载的数据

图 7-21 列表式查看

图 7-22 打开历史数据曲线浏览

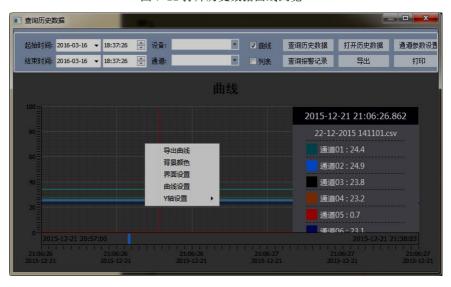


图 7-23 点击鼠标右键

在曲线打开页面点击鼠标右键可以导出曲线图另存,背景颜色可以按个人意愿设置 如下图 7-24。

图 7-24

图 7-25

曲线设置如图 7-25 先选择曲线名,再对曲线名下面的各个通道名称可以自行命名,再对各条曲线的、单位、颜色、是否需要隐藏、显示的小数位的位数和对应几号Y 轴进行选择;Y 轴的选择可以对Y 轴的上下显示的刻度范围进行自行设定,对于不同刻度范围的值,可以选择相对应的Y 轴。比如我们测试交流电压的那个值,就可以选择量程对应 $0\sim300V$ 的 Y3 轴,对于我们测最高温度能达到 1200°C 的,我们可以选择对的量程是 $0\sim1200$ °C 的 Y1 轴,将鼠标移到对应的Y 轴点右键选择可以对此Y 轴的名称、颜色、上下量程范围进行设定。X 轴的参数设置方式与Y 轴设置方式基本相同,可以将鼠标移到X 轴,点击右键,可以设置刻度线的颜色和时间和时间跨度,其中时间跨度是以秒为单位如图 7-26;。

图 7-26

7.4.3 历史数据打印

打印历史数据方法: 回到图 7-17 界面中,可以选择打印曲线和打印列表两种模式, 先选择需要导出的数据,点击"打开历史曲线"按钮,选择曲线打印选项,进入 7-27 界面,选择曲线点击打印即可。

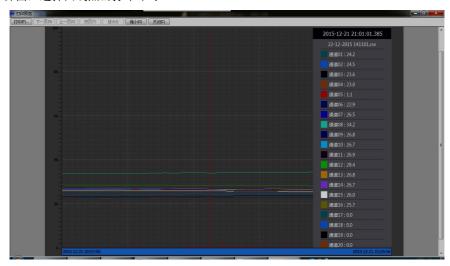


图 7-27 打印预览

7.5 系统退出

方法 1: 点击系统右上角 中的 "×"。

方法 2: 点系统主菜单栏的"文件(F)"选项,选择"退出(×)"如下图 7-28 所示。

图 7-28 退出系统

八、记录仪连接 T-link 远程监控平台

1、向供应商确定本记录仪是否带有连接 www.tlink.io 平台的协议(由下图第2点可知):

图 8-1 硬件信息

2、 找一条能连外网的网线连接记录仪,设置记录仪 IP 参数,输入 tlink 平台设备序列号。测试此网线是否能上网,用这条网线暂时把电脑连上 internet 网络,获取上网IP 地址,并确保该 IP 能正常上网(包括此端口**未被** MAC 地址锁定),获取方式如图 8-2,将图 8-3 中的 IP 输入到记录仪系统设置界面内的 IP 地址,或者直接按图 8-4 到图 8-8 步骤填写系统的 IP 和默认网关。



图 8-2

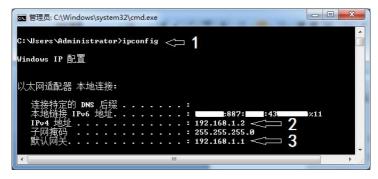


图 8-3

L屏幕黑色空白区域进入参数信息系: 正在图动 按住触频屏,可进入启动属性窗口	尼节网络南瓜阿比州	1 全业12 台方
The transport of the last of t	并 暴黑色空白区域进	人参数信息系:
按性 触摸屏 ,可进入启动属性窗口	在启动	
	按住触摸屏,可进入启动属性窗口	

图 8-4

3、记录仪开机后在启动画面点击黑色空白区域输入密码: zrdz 进入系统维护页面。

	あ原 性 系統信息 存储信息 系統	生物
	产品配置: 0007211300 产品偏号: 17010100106 序 列号: DF2891394B71304FB8B3EE95 软件版本: 7.7(01.0006) / 7.7(01.0006) 系统版本: NK_A3352_70_201.07	
	启动工程	导出信息
点击系	不启动工程	文件操作
统维护➡	系统维护	重新启动

图 8-5 启动属性

图 8-6 设置系统参数

点击设置系统参数找到 TCP 系统设置找到 IP 地址设置,输入电脑上查到的 IP 地址和子网掩码及网关,将刚才电脑用的那条网线拔下插入记录仪背面网口。(如果刚才电脑是无线网电脑,那就找一条有线网线插入到记录仪网口,此有线网必须是与刚才电脑无线网在同一个 IP 域段内。

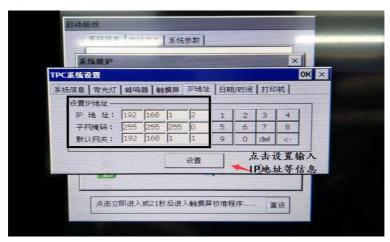


图 8-7 TPC 系统设置

4、在一台可以正常上网的计算机电脑上打开浏览器,登录 http://www.tlink.io网站,如图 8-8 注册一个新的账户并登陆。

图 8-8 物联网平台登录界面

5、点击左边"设备"—》"添加设备",弹出如下图 8-9 新建设备对话框,设备名称可自行命名,链接协议选择"MB TCP",上报周期默认 60 秒或自行更改上报时间。

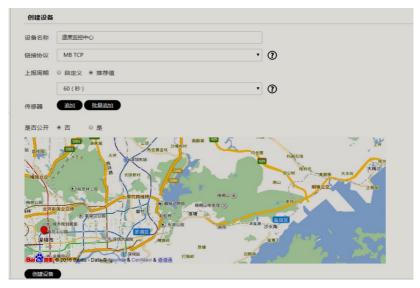


图 8-9 新建设备对话框

6、传感器对话框点击"批量追加",弹出如图 8-10 传感器属性对话框。数量根据实际 采集的通道数填写,类型默认选择"数值型",有效位数选择"2(小数位)",单位根 据实际需求填写,最后点击"确认"按钮。

图 8-10 传感器属性对话框

7、回到新建设备对话框,具体不同通道的命名和参数设置可以在此页面进行修改,最后将页面拉到最底端,点击"创建设备"即可,如图 8-11

图 8-11 新建设备对话框

8、进入设备管理界面,找到原先创建好的"温度监控系统"设备,点击"设置连接",如图 8-12

图 8-12 设备管理界面

9、在弹出的传感器属性界面中,点击每个传感器"读写指令"对话框,进行设置。图 8-13 为传感器属性设置对话框,(注:每个传感器的偏置号=该传感器的位置*2-1,如 传感器-2 的偏置就是(2*2-1)为 3,其他项目**照此对话框填写**即可,不需更改),填写完后点击确定按钮。通过此方法对剩余其它传感器进行设置。

图 8-13 传感器属性设置对话框

10、待所有传感器参数设置完成之后,点击"返回"即可。

图 8-14 设备连接设置界面

11、点击左上角"监控中心",弹出 8-15 监控中心显示界面。(注:**显示界面右上角**有一个序列号,每个设备对应一个唯一的序列号,将此序列号需要输入到记录仪上才能进行连接,具体操作方法在后面第 12 小节进行说明)

图 8-15 监控中心显示界面

12、返回记录仪设置界面,7寸屏记录仪操作方式:进入显示界面后点击屏幕右下角"设置"一》"系统设置",弹出显示密码对话框,不用填写密码,直接点击确定,进入如图 8-16 系统设置窗口。右下角序列号内填写第 11 小节所得到的"序列号",点击

返回,回到显示界面;10寸屏的记录仪操作方式:在系统设置界面连续快速点击左上角 LOGO 五下,会跳出序列号输入对话框,同样的方法输入序列号即可。

图 8-16 7 寸屏序列号填写界面

13、把之前在电脑上查询 IP 地址的那个电脑上的网线将仪器连接到路由器上,等待 30 秒,观察如图 8-17 物联网平台上的数据,若显示已连接且有数据显示,则连接成功,若仍然显示未连接,则重新检查前面步骤。

8-17 物联网平台

14、若需要在手机端查看报警数据,则点击图 8-18 左边栏"触发器"—》"添加触发器",增加一个新的触发器,触发器属性设置如图 8-19

图 8-18 添加触发器

图 8-19 触发器属性设置

15、打开手机微信,搜索"TLINK"公众号,点击关注;进入公众号点击左下角"用户认证"—》"用户绑定",将原先注册的"TLINK"平台账号进行绑定。绑定成功后,点击右下角"我的设备",即可在手机上查看记录仪的实时数据,也可接收实时报警数据。如图 8-20

图 8-20 微信数据查看及报警功能

九、故障分析与排除

数据记录仪采用了先进的生产工艺和测试手段,每一台在出厂前都进行了严格的测试,具有良好的可靠性。在使用过程中,常见的故障一般是操作或参数设置不当引起的。若发现无法处理的故障,请记录故障现象并及时通知当地代理经销商,也可直接与我们联系。

以下是数据记录仪在应用中的常见故障:

故障现象	原因分析	处理措施	
仪器通电不工作无显示	电源线接线错误或开关不良	检查电源接头及开关	
通道显示与实际不符	1. 参数设置中信号设定有误 2. 信号接线错误 3. 量程类型设置不对等 4. 检查系统设置内的"温升" 是否为 OFF	1. 检查参数设置 2. 用表测信号线有无信号输出 3. 重新上电,若现象仍存在请联系厂家	
在常温下温度测试不准 相差大	传感器类型设置可能有误	检查类型设置是否正 确,确定接入传感器 类型是何种类型	
报警输出不正常	1. 报警极限设置错误 2. 报警点被其它通道共享	1. 重新设定极限值 2. 取消其它报警点	
所有温度探头在正常空 气温度下,第一通道温度 与其它所有通道温度不 一致,其它通道温度接近 为"0.00"	在仪器系统参数设置里面有一个"温升"按钮设成"ON"	将其设成"OFF"即可	
通道测量值显示: 00000	测试模组没插好或没插入	模块没有工作或与厂 商联系	
通道测量值显示: 1999.9	测温传感器开路或接触不良	更换或与厂商联系	