LED驅(qū)動(dòng)器引起的LED系統(tǒng)限制介紹
盡管led在過(guò)去十年中已經(jīng)有了顯著的改進(jìn),但是驅(qū)動(dòng)技術(shù)并沒(méi)有跟上步伐,在某些方面,它是新應(yīng)用的限制因素。尺寸是一個(gè)特殊的問(wèn)題。大幅增加開(kāi)關(guān)頻率有助于減小尺寸,但往往導(dǎo)致其他問(wèn)題或代價(jià)高昂。北歐電力轉(zhuǎn)換器公司的首席執(zhí)行官米奇·麥德森解釋了他的公司如何克服這些障礙,并通過(guò)設(shè)計(jì)高頻率的LED驅(qū)動(dòng)器使其變得可行。
傳統(tǒng)20 W驅(qū)動(dòng)電源的比較,其中無(wú)源器件構(gòu)成大部分體積,開(kāi)關(guān)頻率為100 kHz,而新型NPC技術(shù)為30 MHz
LED技術(shù)革新了照明市場(chǎng)的效率,外形,壽命和控制能力,并繼續(xù)提供新的解決方案。LED驅(qū)動(dòng)在過(guò)去的十年里有了些許的改進(jìn)和優(yōu)化,但是根本的問(wèn)題仍然存在:自從1970年代引入開(kāi)關(guān)電源以來(lái),功率轉(zhuǎn)換技術(shù)基本上沒(méi)有改變。在尺寸、壽命和控制方面,LED已經(jīng)超過(guò)了驅(qū)動(dòng)它們的LED驅(qū)動(dòng)??s小這種差距的一種方法是大幅度提高開(kāi)關(guān)頻率。這個(gè)想法并不新穎,但以一種商業(yè)可行的方式實(shí)現(xiàn)的可能性卻是。增加開(kāi)關(guān)頻率的應(yīng)用技術(shù)減少了無(wú)源儲(chǔ)能元件的尺寸。因此,它降低了尺寸、重量,從而降低了LED驅(qū)動(dòng)程序的成本,同時(shí)提高了可靠性和壽命。
LED驅(qū)動(dòng)器引起的LED系統(tǒng)限制
在過(guò)去的十年中,LED的功效已經(jīng)提高了很多倍,并且價(jià)格也受到了相應(yīng)的影響,并且還將繼續(xù)下去。功效的提高導(dǎo)致功耗降低,因此降低了對(duì)冷卻的需求。所有這些都導(dǎo)致更小的燈具具有更高的設(shè)計(jì)自由度和更低的成本。然而,提供和控制LED所需的LED驅(qū)動(dòng)器沒(méi)有看到相同的重大改進(jìn)。
首先,LED驅(qū)動(dòng)器的尺寸和形狀因子由所需的部件設(shè)定,例如無(wú)源儲(chǔ)能元件(電感器和電容器)。其次,所需組件的有限壽命限制了LED驅(qū)動(dòng)器的壽命和可靠性,導(dǎo)致它們成為L(zhǎng)ED系統(tǒng)故障的關(guān)鍵原因 - 并且通常早于用戶預(yù)期。第三,雖然LED驅(qū)動(dòng)器的成本隨著數(shù)量的增加而減少,但進(jìn)一步降低成本受到銅等傳統(tǒng)組件的原材料的限制。因此,LED驅(qū)動(dòng)器需要新的創(chuàng)新以趕上LED的發(fā)展并滿足市場(chǎng)需求。
LED驅(qū)動(dòng)器中無(wú)源元件的價(jià)值,尺寸和價(jià)格與開(kāi)關(guān)頻率成反比,開(kāi)關(guān)頻率的急劇增加將導(dǎo)致功率密度大大增加并降低成本。這個(gè)概念的好處是眾所周知的,同樣也是問(wèn)題所在。如下所述,增加的開(kāi)關(guān)頻率會(huì)導(dǎo)致嚴(yán)重的開(kāi)關(guān)損耗,從而破壞硬開(kāi)關(guān)開(kāi)關(guān)電源(SMPS)的效率并導(dǎo)致系統(tǒng)故障。
傳統(tǒng)技術(shù)
第一款開(kāi)關(guān)電源是在20世紀(jì)70年代早期開(kāi)發(fā)的,從此成為電源和LED驅(qū)動(dòng)器的市場(chǎng)標(biāo)準(zhǔn)。在40多年的研發(fā)中,電源的效率和功率密度得到了提高,從那時(shí)起,隨著技術(shù)的成熟和組件的優(yōu)化,電源的性能也得到了提升。然而,改善步伐大大減少。
對(duì)于大多數(shù)LED驅(qū)動(dòng)器的功率水平,公布的一些最佳結(jié)果是效率約為95%,功率密度為0.88 W / cm 3。這些結(jié)果是在具有受控環(huán)境且不關(guān)注成本的實(shí)驗(yàn)室中實(shí)現(xiàn)的。對(duì)于商業(yè)產(chǎn)品,接受較低的效率和功率密度以降低成本。
大眾市場(chǎng)上一些最小的電源是Apple著名的方糖筆記本電腦充電器。60W版本的功率密度為0.59W / cm。(包括外殼和插頭),效率為90%。對(duì)于USB充電器,效率和功率密度較低,效率約為75%,功率密度約為0.31 W / cm3。同樣的趨勢(shì)適用于具有差異的LED驅(qū)動(dòng)器,具體取決于功率水平,規(guī)格,性能和價(jià)格。在較低功率水平下效率和功率密度的下降部分是由于外殼,插頭,控制,啟動(dòng),保護(hù)和其他內(nèi)務(wù)處理電路與功率水平無(wú)關(guān),部分原因是與價(jià)格的權(quán)衡。隨著功率水平的提高,效率變得更加重要,通過(guò)提高效率,價(jià)格上漲通常更容易接受。
開(kāi)關(guān)損耗會(huì)影響開(kāi)關(guān)頻率
傳統(tǒng)的SMPS拓?fù)浣Y(jié)構(gòu)如降壓,升壓和反激是硬開(kāi)關(guān),這意味著電路板上的MOSFET半導(dǎo)體在其上有電壓和/或電流通過(guò)時(shí)會(huì)切換。結(jié)果是每次導(dǎo)通時(shí)MOSFET中的能量都會(huì)耗散。這被稱為開(kāi)關(guān)損耗。在傳統(tǒng)的轉(zhuǎn)換器中,開(kāi)關(guān)頻率被選擇作為效率(開(kāi)關(guān)損耗),尺寸和成本之間的折衷。在大多數(shù)商業(yè)產(chǎn)品中,選擇50-400 kHz范圍內(nèi)的開(kāi)關(guān)頻率,因?yàn)檫@給出了公平的權(quán)衡。
該頻率范圍內(nèi)的典型SMPS如圖1所示。這里可以清楚地看到,無(wú)源儲(chǔ)能元件,電容器和磁性元件構(gòu)成了大部分體積。物料清單(BOM)的細(xì)分通常會(huì)導(dǎo)致無(wú)源和有源組件之間的分別為60%和40%。因此,通過(guò)減少無(wú)源元件可以實(shí)現(xiàn)顯著的尺寸和成本優(yōu)勢(shì)。由于這些元件的數(shù)值,尺寸和成本與開(kāi)關(guān)頻率成反比,直接的方法是將開(kāi)關(guān)頻率顯著提高到MHz范圍,甚至達(dá)到甚高頻(VHF)范圍(30) -300 MHz)。然而,將頻率簡(jiǎn)單地增加到VHF范圍將使開(kāi)關(guān)損耗增加近1,000倍。
為了避免開(kāi)關(guān)損耗并且能夠在保持高效率的同時(shí)增加頻率,必須使用新的拓?fù)浣Y(jié)構(gòu)。利用諧振轉(zhuǎn)換器,可以實(shí)現(xiàn)零電壓開(kāi)關(guān)(ZVS),從而可以避免由寄生開(kāi)關(guān)電容引起的開(kāi)關(guān)損耗。存在三組諧振轉(zhuǎn)換器:串聯(lián)諧振,并聯(lián)諧振和串并聯(lián)諧振轉(zhuǎn)換器。
串聯(lián)諧振轉(zhuǎn)換器具有最高的效率和最低的復(fù)雜性,但在輸出調(diào)節(jié)方面存在基本挑戰(zhàn),特別是對(duì)于輕載和空載情況。
并聯(lián)諧振轉(zhuǎn)換器具有更好的負(fù)載調(diào)節(jié),但它們的諧振電流不隨輸出功率而變化。即使在輕負(fù)載時(shí)也會(huì)導(dǎo)致滿負(fù)載損耗,從而導(dǎo)致非常低的輕負(fù)載效率。
串并聯(lián)諧振轉(zhuǎn)換器具有串聯(lián)諧振和并聯(lián)諧振元件。這些元件可以平衡,以獲得串聯(lián)諧振和并聯(lián)諧振拓?fù)涞膬?yōu)點(diǎn),同時(shí)顯著降低其缺點(diǎn)。LLC轉(zhuǎn)換器是諧振轉(zhuǎn)換器最常用的拓?fù)浣Y(jié)構(gòu)。它可以設(shè)計(jì)為零電壓開(kāi)關(guān)(ZVS),以減少開(kāi)關(guān)損耗并提高頻率。LLC轉(zhuǎn)換器通常用于降壓應(yīng)用,從幾百伏到幾十伏,通常功率范圍為400-4000瓦[1]。
自20世紀(jì)80年代以來(lái),已經(jīng)進(jìn)行了研究,將諧振RF放大器(逆變器)與整流器結(jié)合用于DC / DC轉(zhuǎn)換器[2,3]。利用這些類型的轉(zhuǎn)換器,可以實(shí)現(xiàn)ZVS和/或零電流開(kāi)關(guān)(ZCS)。在這種情況下,當(dāng)跨越/通過(guò)它的電壓和/或電流為零時(shí),MOSFET導(dǎo)通。從理論上講,如果切換是在瞬間和恰當(dāng)?shù)臅r(shí)間完成的,那么這應(yīng)該可以消除開(kāi)關(guān)損耗。在實(shí)踐中,可以通過(guò)與理想情況的輕微偏差實(shí)現(xiàn)非常高的效率。
VHF諧振轉(zhuǎn)換器
在過(guò)去十年中,在VHF系列中運(yùn)行的這類轉(zhuǎn)換器的重點(diǎn)和研究已經(jīng)增加。進(jìn)入這個(gè)頻率范圍可以大大減少對(duì)被動(dòng)儲(chǔ)能和磁芯的需求。電解電容器可以用空心磁性元件和陶瓷電容器代替,從而最大限度地減小尺寸和價(jià)格,同時(shí)延長(zhǎng)使用壽命[4,5]。
開(kāi)關(guān)頻率在30到300 MHz之間,選擇拓?fù)鋾r(shí)的主要問(wèn)題是開(kāi)關(guān)損耗。由寄生輸出電容引起的MOSFET開(kāi)關(guān)損耗隨開(kāi)關(guān)頻率線性增加,并成為這些頻率的主要損耗機(jī)制,如果拓?fù)浣Y(jié)構(gòu)沒(méi)有考慮到這一點(diǎn)。
E類
大多數(shù)拓?fù)浣Y(jié)構(gòu)都來(lái)自E類逆變器,它利用了設(shè)計(jì)中開(kāi)關(guān)的輸出電容,并確保在MOSFET導(dǎo)通之前電容完全放電。一些拓?fù)浣Y(jié)構(gòu)也可以實(shí)現(xiàn)零電流開(kāi)關(guān)(ZCS)。這消除了由例如MOSFET封裝中的寄生電感引起的損耗。盡管在功率轉(zhuǎn)換器中通常不是很大的損耗機(jī)制,但這導(dǎo)致電壓的導(dǎo)數(shù)在開(kāi)關(guān)實(shí)例(ZdVS或ZDS)處為零,因此是相關(guān)的。如果MOSFET沒(méi)有在正確的時(shí)間完全導(dǎo)通,它可以減少影響,因?yàn)樗厦娴碾妷簩⒃谝欢螘r(shí)間內(nèi)接近零。
基本的E類轉(zhuǎn)換器是迄今為止最不復(fù)雜的拓?fù)浣Y(jié)構(gòu),并且有很好的描述。在各個(gè)組件不會(huì)相互嚴(yán)重影響的情況下,可以使用簡(jiǎn)單的設(shè)計(jì)流程。逆變器僅由一個(gè)MOSFET,兩個(gè)電感器和一個(gè)電容器組成。它非常適合具有低輸入電壓的應(yīng)用,但對(duì)于具有高輸入電壓的應(yīng)用(例如電源),電壓應(yīng)力是開(kāi)關(guān)上輸入電壓的3.5倍是這種拓?fù)浣Y(jié)構(gòu)的主要缺點(diǎn)。如果設(shè)計(jì)為在最佳情況下工作,則電感器對(duì)于限制瞬態(tài)響應(yīng)和功率密度的任何拓?fù)浣Y(jié)構(gòu)而言是最大的。然而,逆變器可以設(shè)計(jì)成在較小的標(biāo)稱情況下操作,具有較小的電感器和較快的瞬態(tài)響應(yīng)
SEPIC轉(zhuǎn)換器可以看作E級(jí)轉(zhuǎn)換器的略微修改版本,原理圖中唯一的區(qū)別是諧振回路中的電感器被移除。這不僅減少了電感器的數(shù)量,而且其余兩個(gè)電感器也將小于E級(jí)(如果設(shè)計(jì)為接近最佳值)。然而,SEPIC的設(shè)計(jì)更復(fù)雜,因?yàn)槟孀兤骱驼髌鞑荒軉为?dú)設(shè)計(jì),因此所有部件相互影響。因此,使用SEPIC可以在效率,瞬態(tài)響應(yīng),尺寸和成本方面實(shí)現(xiàn)更好的性能,但設(shè)計(jì)更復(fù)雜。
類φ 2
類φ 2逆變器也是E級(jí)的改進(jìn)型,唯一的區(qū)別是增加了LC電路,通過(guò)使其更加梯形來(lái)降低MOSFET兩端的電壓。雖然這是降低電壓應(yīng)力的好方法,但陡峭的電壓曲線需要更大的電流,使損耗大于E類逆變器。雖然它有2個(gè)額外的元件,但與E類逆變器相比,物理尺寸可以或多或少與電感器相同。由于較高的諧振電流,總損耗大于E類逆變器。如果可以從另一類MOSFET中進(jìn)行選擇,例如100 V器件而不是150 V器件,那么這可能是可以接受的,但如果不是這樣的話。E級(jí)或SEPIC是更好的選擇。
DE
類DE逆變器是由與E類逆變器相同數(shù)量的元件組成的半橋逆變器; 只有最大的電感被開(kāi)關(guān)取代。因此,該拓?fù)鋬H具有一個(gè)電感器,其同時(shí)小于其他拓?fù)渲械娜魏坞姼衅?。MOSFET上的峰值電壓是迄今為止在任何逆變器中看到的最低電壓,電流也是最低的。
類φ 2逆變器是單開(kāi)關(guān)逆變具有最低電壓應(yīng)力。該拓?fù)浣Y(jié)構(gòu)的電壓應(yīng)力約為輸入電壓的2.5倍,是DE的2.5倍。這導(dǎo)致MOSFET的輸出電容中存儲(chǔ)的能量超過(guò)6倍。這是為了獲得ZVS而需要共振的最小能量。對(duì)于具有高輸入電壓的低功率應(yīng)用(例如電源連接的SELV LED驅(qū)動(dòng)器),這因此設(shè)定諧振電流的量。此外類φ 2具體地,甚至具有更多的諧振電流,由于3 次引入諧波以降低峰值電壓。避免開(kāi)關(guān)損耗并同時(shí)保持低諧振電流是實(shí)現(xiàn)高效率的關(guān)鍵[6]。因此,DE類逆變器是具有實(shí)現(xiàn)最高效率的基本潛力的拓?fù)洹?/p>
因此,如果可以設(shè)計(jì)有效的高側(cè)柵極驅(qū)動(dòng),則DE逆變器優(yōu)于所有單開(kāi)關(guān)拓?fù)洹?/p>
VHF的技術(shù)優(yōu)勢(shì)
移動(dòng)到更高頻率有幾個(gè)好處; 其主要優(yōu)點(diǎn)是小型化,可靠性/壽命和調(diào)光效率。
小型化
無(wú)源能量存儲(chǔ)元件構(gòu)成SMPS的大部分體積。作為粗略平均值,這些組件構(gòu)成體積的95%,有源組件與電阻器等一起構(gòu)成剩余的5%。盡管開(kāi)關(guān)頻率的增加并未反映出尺寸減小的一對(duì)一,但將頻率從100 kHz增加到30 MHz將減少大約10倍。因此,整體SMPS將減少至原始體積的約15%。如圖4所示,其中以100 kHz工作的傳統(tǒng)20 W LED驅(qū)動(dòng)器與以30 MHz工作的20 W LED驅(qū)動(dòng)器進(jìn)行比較。
可靠性
LED系統(tǒng)故障的很大一部分是由LED驅(qū)動(dòng)器引起的; 一些人聲稱占絕大多數(shù)。在大多數(shù)情況下,這是由于電解電容器,因?yàn)樗鼈兊膲勖S溫度大大降低,其中的液體蒸發(fā)。VHF對(duì)電容的需求減少消除(或顯著降低)對(duì)電解電容器的需求,從而限制了這種故障原因。
此外,對(duì)能量存儲(chǔ)的需求減少導(dǎo)致空心磁芯成為有芯磁性的可行替代方案。向空心磁場(chǎng)的轉(zhuǎn)變需要頻率的顯著跳躍,因?yàn)闆](méi)有核心可以實(shí)現(xiàn)更小的每體積電感。如果頻率增加到VHF范圍,則空心和PCB嵌入式磁性元件成為可行的解決方案,因?yàn)檫@些頻率所需的電感可以在較小的物理尺寸下進(jìn)行,并且可以避免磁芯損耗[7]。這不僅顯著降低了BOM,而且還提高了LED驅(qū)動(dòng)器的堅(jiān)固性和機(jī)械穩(wěn)定性,因?yàn)榇判栽哂凶罡叩奈锢碣|(zhì)量并且對(duì)高溫敏感。
高調(diào)光效率
另一個(gè)強(qiáng)大的好處是提高調(diào)光效率。由于非常高的開(kāi)關(guān)頻率,可以在調(diào)光時(shí)調(diào)制整個(gè)轉(zhuǎn)換器,而不會(huì)引起可見(jiàn)的閃爍。通過(guò)這種方式,轉(zhuǎn)換器可以在最佳條件下開(kāi)啟并在最高效率下運(yùn)行,也可以在低損耗下運(yùn)行。這樣可以實(shí)現(xiàn)非常平坦的效率曲線。這可以用于在特定燈具中實(shí)現(xiàn)更高的調(diào)光效率,或者在更廣泛的燈具組中使用給定的驅(qū)動(dòng)器,同時(shí)實(shí)現(xiàn)所有的高效率。
30 MHz下工作的圖示20 W室內(nèi)驅(qū)動(dòng)器的調(diào)光效率。
VHF LED驅(qū)動(dòng)器
VHF功率轉(zhuǎn)換器的優(yōu)勢(shì)突破了功率轉(zhuǎn)換器的界限。然而,對(duì)傳統(tǒng)轉(zhuǎn)換器所做的權(quán)衡仍然是相關(guān)的,因?yàn)槿绻艑捚渌麉?shù)的規(guī)格,仍然可以進(jìn)一步改進(jìn)一些參數(shù)。主要優(yōu)化參數(shù)通常是尺寸,效率,可靠性,成本和性能。特定的驅(qū)動(dòng)程序設(shè)計(jì)可以使用VHF的所有優(yōu)點(diǎn)來(lái)改進(jìn)一個(gè)或兩個(gè)參數(shù),或者將改進(jìn)擴(kuò)展到所有參數(shù),如圖6中的蜘蛛網(wǎng)所示。
在本節(jié)中,將介紹VHF LED驅(qū)動(dòng)器的兩個(gè)示例。這些驅(qū)動(dòng)器均基于DE級(jí)轉(zhuǎn)換器,主要針對(duì)尺寸(室內(nèi))或可靠性(室外)進(jìn)行了優(yōu)化。
緊湊型室內(nèi)驅(qū)動(dòng)
20 W驅(qū)動(dòng)器針對(duì)室內(nèi)燈具進(jìn)行了優(yōu)化,具有纖薄的外形,緊湊的外形,低成本和高調(diào)光效率。調(diào)光至10%時(shí),效率僅下降5%。
該驅(qū)動(dòng)器的總體高度僅為6 mm。電解電容略高,但可以通過(guò)將其分成兩個(gè)更薄的版本或在PCB中切割來(lái)減少。另一種選擇是用陶瓷電容器替換電解電容器,如圖8所示。這增加了成本,但延長(zhǎng)了使用壽命并降低了高度。
可靠的戶外駕駛員
戶外照明的要求與室內(nèi)照明不同。雖然尺寸仍然相關(guān),但由于更換故障驅(qū)動(dòng)器的成本,壽命和可靠性是關(guān)鍵參數(shù)。圖10中的60 W驅(qū)動(dòng)器針對(duì)此應(yīng)用進(jìn)行了優(yōu)化。
該驅(qū)動(dòng)器不含電解質(zhì),結(jié)合良好的電氣和熱設(shè)計(jì),確保在75度TC時(shí)的使用壽命超過(guò)120,000小時(shí)。此外,它還具有8 kV / 4 kA共模和10 kV / 5kA差模的內(nèi)置浪涌保護(hù),以確保高可靠性和長(zhǎng)壽命。驅(qū)動(dòng)程序完全可編程,并具有所有標(biāo)準(zhǔn)控制接口。該驅(qū)動(dòng)器外形纖薄,僅25 mm,體積約為傳統(tǒng)SMPS最接近解決方案的一半。
結(jié)論
在尺寸和可靠性方面,LED驅(qū)動(dòng)器已成為L(zhǎng)ED照明的主要瓶頸之一。VHF LED驅(qū)動(dòng)器背后的技術(shù)為L(zhǎng)ED照明提供了基本優(yōu)勢(shì),具有更小的外形,更高的可靠性和更高的調(diào)光曲線效率??梢哉{(diào)整給定駕駛員的設(shè)計(jì)以關(guān)注與給定照明應(yīng)用相關(guān)的益處。
隨著傳統(tǒng)電源解決方案的發(fā)展停滯不前以及由于LED的改進(jìn)不斷提高的需求,下一代LED照明需要新的技術(shù)和解決方案。通過(guò)將射頻工業(yè)的電路與電力電子的設(shè)計(jì)方法結(jié)合起來(lái),可以設(shè)計(jì)新的VHF SMPS拓?fù)?,有效地避免開(kāi)關(guān)損耗。在此基礎(chǔ)上,減少了被動(dòng)儲(chǔ)能元件的需求,使笨重的磁性元件和溫度敏感的電解電容器得以去除。